Restricted Covariance Priors with Applications in Spatial Statistics.

نویسندگان

  • Theresa R Smith
  • Jon Wakefield
  • Adrian Dobra
چکیده

We present a Bayesian model for area-level count data that uses Gaussian random effects with a novel type of G-Wishart prior on the inverse variance- covariance matrix. Specifically, we introduce a new distribution called the truncated G-Wishart distribution that has support over precision matrices that lead to positive associations between the random effects of neighboring regions while preserving conditional independence of non-neighboring regions. We describe Markov chain Monte Carlo sampling algorithms for the truncated G-Wishart prior in a disease mapping context and compare our results to Bayesian hierarchical models based on intrinsic autoregression priors. A simulation study illustrates that using the truncated G-Wishart prior improves over the intrinsic autoregressive priors when there are discontinuities in the disease risk surface. The new model is applied to an analysis of cancer incidence data in Washington State.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...

متن کامل

Covariance functions for mean square differentiable processes on spheres

Many applications in spatial statistics involve data observed over large regions on the Earth’s surface. There is a large statistical literature devoted to covariance functions capable of modeling the degree of smoothness in data on Euclidean spaces. We adapt some of this work to covariance functions for processes on spheres, where the natural distance is great circle distance. In doing so, we ...

متن کامل

Diffusion-based spatial priors for functional magnetic resonance images

We recently outlined a Bayesian scheme for analyzing fMRI data using diffusion-based spatial priors [Harrison, L.M., Penny, W., Ashburner, J., Trujillo-Barreto, N., Friston, K.J., 2007. Diffusion-based spatial priors for imaging. NeuroImage 38, 677-695]. The current paper continues this theme, applying it to a single-subject functional magnetic resonance imaging (fMRI) study of the auditory sys...

متن کامل

Computationally-efficient algorithms for sparse, dynamic solutions to the EEG source localization problem.

OBJECTIVE Electroencephalography (EEG) and magnetoencephalography (MEG) non-invasively record scalp electromagnetic fields generated by cerebral currents, revealing millisecond-level brain dynamics useful for neuroscience and clinical applications. Estimating the currents that generate these fields, i.e., source localization, is an ill-conditioned inverse problem. Solutions to this problem have...

متن کامل

Weakly Informative Prior for Point Estimation of Covariance Matrices in Hierarchical Models

When fitting hierarchical regression models, maximum likelihood (ML) estimation has computational (and, for some users, philosophical) advantages compared to full Bayesian inference, but when the number of groups is small, estimates of the covariance matrix (S) of group-level varying coefficients are often degenerate. One can do better, even from a purely point estimation perspective, by using ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bayesian analysis

دوره 10 4  شماره 

صفحات  -

تاریخ انتشار 2015